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ABSTRACT

Presented topic is from the research fields called

Artificial Life and Artificial Intelligence (AI). In this

paper, there is presented novel approach to designing

agent architectures with its requirements. The approach

is inspired by inherited modularity of biological brains

and agent architectures are represented here as set

of given reusable modules connected into a particular

topology. This paper presents design of two particular

modules for future use in more complex architectures.

The modules are used for implementing model-free

motivation-driven Reinforcement Learning (RL). First,

the novel framework for these architectures is described

together with a used simulator. Then, the design of

two new reusable domain-independent components of

agent architectures is described. Finally, experimental

validation of these new components and their future use

is mentioned.

INTRODUCTION

This paper deals with design of agent architectures

in the domain of Artificial Life (ALife), which is often

inspired in ethology. In ethology, the emphasis is put

on agents behaviour. Observing agents behaviour and

determining its origins (decomposition of problem) is

one possible source of inspiration for architecture design

(called ”top-down” approach). The other possible ap-

proach (called ”bottom-up”) is in connecting small sys-

tems (capable of simple behaviour) into larger architec-

tures. This way of designing intelligent systems is often

called connectionism. Such connectionist models may

have promising future with new, more detailed models

of neurons Maass (1996); Izhikevich (2003) together

with emerging specialized hardware Thomas and Luk

(2009) for them. Each approach has own advantages and

drawbacks. Our focus is aimed more towards combining

the two above together into new, hybrid systems. These

hybrid architectures partly employ ethological principles

and partly connectionist ones. Our approach focuses on

reusability of particular components of agent architec-

tures. This paper describes two reusable modules, which

can be freely used in variety of modular architectures.

The first chapter of this paper describes our novel

framework for representation and design of hybrid agent

architectures, its goals and requirements. The second

chapter describes theory and implementation of two

new modules which implement domain-independent and

model-free Reinforcement Learning (RL). The chapter

Experiments describes experiments simple architecture

used for verification of these modules. Finally, results

of experiments are evaluated and future use of these

modules in automatic design of agent architectures is

mentioned.

HYBRID ARTIFICIAL NEURAL NETWORK

SYSTEMS FRAMEWORK

Rather than designing one particular architecture suit-

able for a particular task, our research focuses on modu-

lar systems Auda and Kamel (1999) where each module

can be reused in various architectures. An example of

typical reusable domain independent module can be seen

the Categorizing and Learning Module (CALM) Murre

et al. (1989).

Neural Module

For this purpose, the framework called Hybrid Artifi-

cial Neural Network Systems (HANNS) is described. Its

main goal is in unification of representation of partic-

ular modules, so that these modules can be seamlessly

connected into bigger systems. Particular sub-systems

use for communication the same methods as ANNs and

are defined as ”Neural Modules”. Each Neural Module

can have Multiple Inputs/Multiple Outputs (MIMO),

either real-valued or spiking type. Neural Module can

implement theoretically any component of agent archi-

tecture: sensory systems, decision-making modules or

actuators. Scheme of Neural Module can be seen in the

Fig.1, where particular components are explained in this

section in more detail.

Prosperity Measure: The other main goal of this

framework is enabling automatic design of agent archi-

tectures by means of Evolutionary Algorithms (EAs).

Here, similar methods to neuro-evolution Fekiac et al.

(2011) can be used. While omitting multi-objective
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Fig. 1. Scheme of Neural Module with three data and configuration
inputs, three outputs, one ”prosperity” output and arbitrary inner
structure. An encapsulated algorithm can be implemented by means
of Robotic Operating System (ROS). The prosperity output represents
subjective heuristics telling how well the algorithm performs.

optimization techniques Deb (2011), the evolutionary

approach requires single measure of quality of a solution

(architecture) represented by an individual. This measure

is called the Fitness.

Often, the quality of a solution as a whole is evalu-

ated. However architectures represented by HANNS can

be composed of highly heterogeneous modules (from

simple functions to complex algorithms). In order to

give some insight whether a particular module is used

efficiently in a given architecture, it is suitable to have

some measure representing this. Therefore this frame-

work defines the Prosperity. The Prosperity is similar to

the Fitness, but represents heuristics which tells ”how

well the particular Neural Module probably works”.

The value should be from the interval 〈0, 1〉, where 0
represents the worst, and 1 the best performance. This

value is ”subjective” and is provided by the Module

itself during the simulation.

Data Connections and Configuration Connections:

Neural Module is purposed to implement various al-

gorithms. Despite the fact that such algorithms should

be domain-independent, some configuration is needed in

many cases. In most cases, the values of parameters are

constant during the simulation. Therefore the HANNS

framework distinguishes data and configuration connec-

tions. This can be used by specialized EA algorithms for

separate searching for connections and parameters (such

as Kordı́k (2006)) or to use predefined parameters and

search only for data connections.

The Simulator NengoROS

In order to create and use as reusable modules as

possible, the simulator NengoROS (available at url-

http://nengoros.wordpress.com/) was created. It com-

bines simulator of large-scale neural networks (based

on Neural Engineering Framweork (NEF) Eliasmith and

Anderson (2003)) called Nengo (available at nengo.ca)

and the Robotic Operating System (available at http:

//www.ros.org/). The ROS is decentralized infrastructure

based on nodes Quigley et al. (2009), which communi-

cate by means of messages over the TCP/IP protocol.

In the ROS, each node is separated process (several

programming languages supported so far), by connecting

several nodes together, a network-like structure can be

cerated. Particular algorithms can be used (or imple-

mented) as ROS Nodes, where each ROS node has own

Jython interface which connects it into the NengoROS

simulator. The Jython interface defines modem, a ROS

node which translates ROS messages into the Nengo

data, see Fig.1.

THEORETICAL BACKGROUND

When compared to the knowledge-based AI and

to connectionism approaches, several types of RL

algorithms have several advantages. Compared to

supervised-learning ANNs, these algorithms do not re-

quire learning by examples. And compared to planning

systems, they do not require even a model of the

environment. RL is based only on rewards received

as a result of some action executed. This makes RL

algorithms suitable for unknown environments and also

usable in the HANNS framework. For the integration,

the type of RL, called Q-Learning was chosen.

Q-Learning Algorithm

The Q-Learning algorithm is suitable for online learn-

ing without need of environment model - it is model-free

approach. During the learning, the algorithm updates the

action-value function Q, which represents mapping set

of agent’s actions A and set of all admissible environ-

ment states S to real values according to the equation

(1).

Q : A× S → R (1)

Values in the matrix Q(s, a) then define the benefit

of each action in a given actual state. When exploiting

the knowledge learned the by Q-Learning algorithm, the

best action (with the highest value in the matrix) can be

selected at each step for obtaining best known policy in

a given situation. At each step of the algorithm, values in

the Q(s, a) matrix are updated according to the equation

(2):

Q(st, at) = Q(st, at)+

α
[

rt + γmax
a

Q(st+1, at+1)−Q(st, at)
]

. (2)

Here, the st ∈ S is a previous state of the envi-

ronment, at ∈ A is action which was just executed,

rt is reward received at a result to the action at, the

current time step t, maxa Q(st+1, at+1) is the action

with the highest utility value in the current state. There

are the following algorithm parameters: γ ∈ 〈0; 1) is a

forgetting factor and α ∈ (0; 1〉 is a learning rate, for

more information see Vı́tků (2011).

The scheme of Q-Learning system and the principle

of it’s function is depicted in the figure 2. The Stochastic



Return Predictor (SRP) is composed of Q-Learning

algorithm and Action Selection Method (ASM). The

ASM selects the action and executes it, RL algorithm

observes the reinforcements received and updates the

value of the Q function for the previous state according

to the eq. (2).

The algorithm can be further improved by the Eli-

gibility Traces. When using the Eligibility traces, the

algorithm updates values of several state-action pairs at

one step Vı́tků (2011). The parameter λ defines how

much are previous states updated. Correct estimation of

the λ can greatly improve the speed of learning, but also

can cause oscillations in learning. This modification is

also called Q-Lambda algorithm.

Action Selection Method: Actions to be executed by

the agent are selected by the ǫ-Greedy Action Selection

Method (ASM). The ǫ parameter defines amount of

randomization: with the probability of ǫ, a random action

is selected and with the probability of 1− ǫ the Greedy

action is taken. This helps the agent escape from the

local extreme and encourages exploration of new states.

Motivation Source

As seen in the previous chapter, the amount of

randomization (exploration of the state-space) can be

chosen by varying the ǫ value. This can be taken further

and enable the agent architecture to set the ǫ parameter

dynamically during the simulation, based on the current

situation. If there is a free time, living animals tend to

play/explore the surrounding environment and therefore

gain new knowledge. On the other hand, if the situation

requires fast exploitation of current knowledge, it is not

suitable to explore. In many systems, there is need to

choose good tradeoff between exploration and knowl-

edge exploitation.

In the past, our research team solved this for ex-

ample by defining agents physiology Kadleček (2008);

Kadleček and Nahodil (2001); Kadlecek and Nahodil

(2008). The physiological variable can represent e.g.

need for water. In time, as the value of variable (e.g.

amount of water in body) decreases, the need for cor-

recting this state (drinking) increases. After drinking, the

variable is returned towards the optimal condition and

the motivation decreases.

Exactly this purpose has the Motivation Source. The

simplest case can include one linearly decaying phys-

iological variable, where the amount of motivation in-

versely depends on a value of the physiological variable.

Here, a more natural definition is used: the physiological

variable decays linearly each time step t with predefined

decay:

Vt+1 = Vt − decay, (3)

but the amount of motivation is determined by ap-

plying the sigmoid to the inverse value of physiological

variable V . The resulting amount of Motivation M at

time t is:

Mt =
1

1 + emin+(max−min)∗(1−V t)
, (4)

where min and max parameters are chosen, so that

value of the variable Vt = 0 roughly corresponds to the

motivation of Mt = 1.

DESIGN OF NEURAL MODULES

This section describes the design of two reusable

Neural Module that can be used for model-free learn-

ing in modular agent architectures. This section briefly

describes design and implementation of these modules.

The first module implements the Q-Lambda algorithm

together with the ASM. The second Module implements

the Physiological State Space, which can serve as a

source of motivation in agent architecture Kadleček

(2008).

Q-Learning Module Design

Several design requirements have to be met in order

to successfully implement the Q-Lambda algorithm in

the Neural Module. First, the typical use-case and main

requirements for such a Neural Module in the HANNS

framework will be described. The requirements for in-

tegration of the Q-Lambda algorithm into the Neural

Module are described in the following sections.
Representing the Inputs and Outputs: Neural Mod-

ules in the HANNS communicates by vector of real

values on the interval 〈0, 1〉. Since the module should be

as compatible with classical ANN paradigms as possible,

the encoding of input/output values is selected 1ofN. In

case of actions, only the currently selected one has non-

zero value on its output. Compared to this, array of input

values represent array of state variables. Each discrete

state variable is sampled with predefined step form the

interval 〈0, 1〉.
Operation in non-Episodical Experiments: The Q-

Learning belongs into the group of algorithms which

learn episodically. At the beginning of each episode,

the SRP should start to operate from randomly chosen

state of the environment. This ensures that the algorithm

learns efficiently in the entire state-space. However, in

real-life experiments this cannot be provided often. The

successful learning in continuous experiments is accom-

plished by connecting to the own motivation source. By

dynamically adjusting the exploration vs. exploitation

tradeoff, the learning can be efficient.

In a particular architecture, the RL module represents

some behaviour. We introduce the parameter called

Importance. Increasing of this parameter affects two

following components in the Neural Module:

• Causes decrease of ǫ parameter in the ǫ-Greedy

ASM. Therefore, when the behaviour represented

by the module has high importance, the exploration

is suppressed.

• Causes increase of value of the selected action.

This ensures that in competition against other RL

modules (or other action-selecting sub-systems) has

higher chance to win.



Fig. 2. Scheme of the Q-Learning system. The line labeled “max(Q)” is the prediction of return for the best action. The “Sel(Q)” is the Q actually
taken, it is combined with return prediction and reinforcement received from the environment ri through unit the delay z−1, γ is the discount factor
and α is the learning rage. The predictor predicts action values in a current state, based on this information the ASM selects action to be executed.
The corresponding Neural Module will have the following configuration inputs: α,γ,lambda, data inputs will represent states and reward and data
outputs will represent actions to be executed.

Defining Prosperity of Q-Learning Neural Module:

The single value of Prosperity for this module can be

difficult to choose. In our implementation, the prosperity

of the module is composed of two values as follows:

Pt =
Covert +MCRt

2
, (5)

Where, Mean Cumulative Reward (MCR) is defined

as mean reward (R) received during the simulation:

MCRt =

∑

i
Ri

i
∀i ∈ 0..t, (6)

and the Covert represents how many states has been

visited (by the RL module) during the simulation.

Motivation Source Module Design

The only change in the motivation source imple-

mentation (compared to the theory) is that the Module

produces two data outputs: The motivation for the

behaviour and the reward received on its input. The

reward output serves mainly for simpler connecting of

modules in the simulator.

The prosperity of this module should correspond to

the value of physiological variable V , defined in the

equation 3. The limbo represents the optimal conditions

of agents physiology. If the physiological state space is

in the limbo area, no motivation is produced Kadleček

(2008). Here the limbo area is in V = 1. The Mean State

Distance (MSD) to optimal conditions (limbo area) is

defined as:

MSDt =

∑

i
SDi

i
∀i ∈ 0..t, (7)

where SDi is state distance from the optimal condi-

tions.

Pt = 1−MSDt. (8)

The more time spent near the optimal conditions,

the better agents behaviour probably is. Therefore the

Prosperity of the Motivation source is defined in the

equation (8).

EXPERIMENTS

The resulting modules were tested in an architecture

composed of one Module with motivation source and

one Q-lambda module. The importance input and the

reward input of the Q-lambda module was connected

to the Motivation source module. Connecting the mo-

tivation to the importance input causes that the action

selection is dynamically weighted between the greedy

and randomized one.

Experiment Description

The architecture was tested on discrete grid map

of size 20 × 20 with obstacles and one attractor, the

environment is described in the Fig.3. The agent was

equipped with 4 actions (moving in four directions)

and the reward was received after reaching the position

containing the reward.

Concluded simulations are made as non-episodical,

this means that the agent starts on initial position (center

of the map) and is let to interact with the environment

freely for given number of steps.



Fig. 3. Simple 2D environment representation. Agent has ability to
execute four actions (moving in four directions). Each position in the
map contains symbol representing action with the highest Q(s, a)
value learned. When the agent follows the greedy policy (Greedy
ASM), these actions will be used. In the map, there are two obstacles
and one attractor.

Validating Functionality of Learning Algorithm

The presented values of prosperity are presented from

10 non-episodical experiments, each started from the

same initial state (center of the map) and lasted 100000

discrete steps. The RL algorithm was configured with

the following empirically-estimated constant parameters:

α = 0.5, γ = 0.3, λ = 0.04.
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The prosperity of architecture is defined as a sum of

prosperities of all Neural Modules used:

Parchitecture =

∑

i
Pi

i
∀i ∈ architecture, (9)
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Fig. 5. Value of the highest utility (of the best action a∗) in the
Q(s, a) matrix, based on agents X,Y position in the map. The nearer
to the reward source, the higher the expected outcome of the best action
is. Positions with obstacles have value of Utility = 0. Note that the
Greedy ASM selects the action with the highest utility in each state.
For better visibility, values on the Z axis are rescaled from the interval
〈0, 1〉. These values represent utilities of actions depicted in the Fig.3.

where Pi is the prosperity of one module. Here, the

Q-Lambda and the Motivation source Modules were

used. The value should represent how suitable is overall

architecture design for a given task. In this case, the

Prosperity should also represent the convergence of

agents learning.

Note that the Prosperity of Q-Lambda module is

composed of MCR and Coverage values. Therefore its

value represents how often the module (agent) receives

the reward as well as how many states it has covered.

The value of the Motivation source is the MSD, which

represents how ”satisfied” is the agent with its behavior.

The Fig.3 is a graphical representation of the best

(learned) action in the state (X,Y coordinates). This rep-

resents agents autonomously learned knowledge during

10000 simulation steps, this strategy would be followed

in case that the Greedy ASM was used. The Fig.5

depicts values in the Q(s, a) matrix. The highest Utility

value for each state (X,Y coordinates) is depicted, these

values correspond to the actions shown in the Fig.3.

Validating the Purpose of Motivation

During the simulation, the amount of motivation

determines how important is learned behaviour. After

obtaining the reward, the motivation decreases towards

zero and the agent starts to perform the exploration. The

value of the motivation should directly correlate to the

agents policy. In order to test this, the speed of decay

of the physiological variable (see the equation (3)) was

altered and resulting agents behaviour was observed.

In case when the decay of the variable is fast, the

agent should ”switch” to the exploitation of learned

knowledge frequently. After satisfying the motivation,

the agent returns to the exploration.



Fig. 6. Motivation value in case when the motivation increases
fast. The X axis represents time steps and the Y represents value
of particular variable. Spikes in the graph represent binary event of
receiving the reward. Continuous value (sigmoidal curves) represents
the amount of motivation. It can be seen that the motivation is source
of exploitation of behaviour which leads to the reward.

Fig. 7. Agents position in the map in time, which corresponds to
the fast increasing motivation. The X axis represents time steps and
the Y axis represents agents current position. Two lines represent the
X and Y position in the map. Note that values of state variables are
sampled from interval of 〈0, 1〉 and the source of reward is located
on coordinates 〈3, 4〉. It can be seen that the agent tends to stay near
the reward source most of the time.

The Fig.6 shows the case when the decay = 0.01
causes relatively fast increase of motivation. When the

motivation is low, the agent explores the environment.

As the motivation increases, gradually less randomiza-

tion is used until the agent reaches the reward. This sets

the motivation back towards zero. The Fig.7 roughly

corresponds the the Fig.6 and represents the agents

position in map during the simulation. It can be seen

that the agent explores only states that are near the

motivation source.

Fig. 8. Motivation value increases slowly in this case, therefore the
agent has ”more time” for exploration. The physiology is satisfied (by
obtaining the reward) only when needed.

In the following experiment, the value of decay =

0.002 causes slower increase of motivation. The Figures

8 and 9 show agents behaviour in this case. It can

be seen that the agent has less overall motivation to

obtain the reward and exploitation of the behaviour is

less important. The Fig.9 shows that the agent explored

bigger part of the environment while satisfying the

motivation when necessary.

Fig. 9. Agents position in the map in time. Compared to the Fig.7, here
the motivation increases slower. In this case, the agent has more time
to explore and therefore reaches more distant parts of the environment
too.

CONCLUSIONS

Here, the two reusable Neural Modules were pre-

sented, one implementing the Q-Learning algorithm

and the second implementing the source of motivation.

The functionality of these modules was experimentally

tested. The results show that the agent ”test-architecture”

composed of these modules is able to successfully learn

in discrete non-episodic experiments (Fig.3,4,5). The ex-

pected oscillations between exploration and exploitation

behaviour were observed (Fig.6,8). This implies that the

architecture was able to dynamically switch between

the knowledge exploration and exploitation as needed

(Fig.7,9).

These presented modules are compatible with our

HANNS framework, but can be also used as stand-alone

ROS nodes. The Java implementation of these nodes is

freely available online (together with the environment)

at https://github.com/jvitku/rl, and the Motivation source

available at: https://github.com/jvitku/physiology.

The presented Neural Modules are made as domain-

independent as possible and therefore may be directly

incorporated in new architectures of autonomous agents,

such as those proposed in Kadleček (2008) or Vı́tků

(2011). Furthermore, the optimization techniques can

be applied in order to build new architectures for a

particular task. By means of techniques similar to the

EAs, the modules can be used in searching for entirely

new agent architectures.
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